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SUMMARY
Transcriptional profiling of two isogenic models of transformation identifies a gene signature linking cancer
with inflammatory and metabolic diseases. In accord with this common transcriptional program, many drugs
used for treatment of diabetes and cardiovascular diseases inhibit transformation and tumor growth.
Unexpectedly, lipid metabolism genes are important for transformation and are upregulated in cancer
tissues. As in atherosclerosis, oxidized LDL and its receptor OLR1 activate the inflammatory pathway
through NF-kB, leading to transformation. OLR1 is important for maintaining the transformed state in devel-
opmentally diverse cancer cell lines and for tumor growth, suggesting a molecular connection between
cancer and atherosclerosis. We suggest that the interplay between this common transcriptional program
and cell-type-specific factors gives rise to phenotypically disparate human diseases.
INTRODUCTION

Clinical and epidemiological studies have linked cancer and other

chronic medical conditions. For example, patients diagnosed

with metabolic syndrome, inflammatory diseases, and autoim-

mune conditions show increased incidence and aggressiveness

of tumor formation (Giovannucci, 2007; Mantovani et al., 2008;

Pischon et al., 2008). Conversely, diabetics treated with metfor-

min to lower insulin levels have reduced levels of cancer in

comparison to untreated individuals (Hsu et al., 2007; Larsson

et al., 2007). Smoking is linked not only to lung cancer, but also

to cardiovascular and other diseases. In general, the molecular

bases of these links among diseases are poorly understood.
Significance

Although there are epidemiological and clinical connections b
these connections are not well understood. mRNA expression
identifies a transcriptional signature and underlying gene reg
addition, it reveals the heretofore unappreciated importance
connection of cancer to atherosclerosis. These observations le
states are nevertheless linked through a common transcription
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Inflammation is commonly associated with cancer formation

and progression, and it is estimated that 15%–20% of all cancer

related deaths can be attributed to inflammation and underlying

infections (Mantovani et al., 2008). Inflammatory molecules are

elevated in many forms of cancer, and they provide growth

signals that promote the proliferation of malignant cells (Balkwill

and Mantovani, 2001; Karin, 2006; De Marzo et al., 2007; Naugler

and Karin, 2008; Pierce et al., 2009). Constitutively active NF-kB,

the key transcription factor that mediates the inflammatory

response, occurs in many types of cancer, and mouse models

provide evidence for a causative role of NF-kB in malignant

conversion and progression (Luedde et al., 2007; Naugler and

Karin, 2008; Sakurai et al., 2008).
etween cancer and other diseases, the molecular bases of
profiling in two isogenic models of cellular transformation

ulatory networks that underlie diverse human diseases. In
of lipid metabolism to cellular transformation as well as the
ad to the view that a variety of phenotypically diverse disease
al program involving inflammatory and metabolic pathways.
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Increased cancer risk is also associated with obesity, type II

diabetes, high cholesterol, and atherosclerosis, which are com-

ponents of a disease state known as metabolic syndrome.

Mechanistically, the link between metabolic diseases and

cancer is less understood than the connection to inflammation.

However, a pathway consisting of AMP-activated protein kinase,

an energy sensor (Hardie, 2008), Akt, and PI3 kinase plays a

critical role in diabetes and other metabolic diseases, and

AMPK activation requires LKB1, a protein kinase that is a tumor

suppressor associated with Peutz-Jeghers syndrome (Shaw

et al., 2004; Shaw et al., 2005). In addition, fatty acid synthase

also plays an important role in cancer pathogenesis, and inhibi-

tors against this enzyme are being tested as anti-cancer drugs

(Kuhajda, 2006; Menendez and Lupu, 2007).

Transcriptional profiling has been a common way to identify

genes and signaling pathways important for carcinogenesis.

However, the various approaches have limitations with regard

to identifying genes relevant to cancer from those affected for

unrelated reasons. Clinical samples derive from a mixed pool

of patients with different clinical characteristics and different

cancer subtypes. Additionally, transcriptional profiles of primary

tumor samples are often not compared with normal matched

samples from the same patient that may be unavailable. Even

when normal matched samples are available, they are usually

derived from cells next to the tumor and may be affected by

the tumor microenvironment and/or may have some of the

genetic alterations as the tumor. Studies utilizing cell lines rarely

involve isogenically matched normal and transformed cell lines,

and we are unaware of a time-course analysis of the cellular

transformation process. The current study uses a different

approach to identify genes involved in cellular transformation

and carcinogenesis by performing transcriptional profiling in

two isogenic models of cellular transformation.

RESULTS

Identification of a Cancer Gene Signature
from Expression Profiling of Two Isogenic
Models of Cellular Transformation
To identify genes differentially regulated during the process of

cellular transformation, we used two isogenic cellular models

(Figure 1A) derived from different tissue types; i.e., for each

model, the nontransformed and transformed states are geneti-

cally identical. One model involves normal mammary epithelial

cells (MCF-10A) (Soule et al., 1990) containing ER-Src, a deriva-

tive of the Src kinase oncoprotein (v-Src) that is fused to the

ligand-binding domain of the estrogen receptor. Treatment of

such cells with tamoxifen rapidly induces Src, and morphological

transformation is observed within 24 to 36 hr (Hirsch et al., 2009;

Iliopoulos et al., 2009), thereby making it possible to kinetically

follow the transition between normal and transformed cells.

Transformation of these cells results in colony formation in soft

agar, foci formation rather than contact inhibition in monolayers,

formation of mammospheres in suspension, and tumors in nude

mice (Hirsch et al., 2009; Iliopoulos et al., 2009).

The other model consists of three isogenic cell lines derived

from primary fibroblasts in a serial manner (Hahn et al., 1999) (Fig-

ure 1A). The first is immortalized by overexpression of telomerase

(hTERT), and exhibits normal fibroblast morphology. The second
expresses hTERT along with both large and small T antigens of

Simian virus 40, and it displays an altered morphology but is

not transformed. The third cell line expresses hTERT, T antigens,

and an oncogenic derivative of Ras (H-RasV12); it is morpholog-

ically transformed and has tumorigenic potential in soft agar and

nude mice. These two isogenic models of cellular transformation

differ with respect to cell type, oncogene, and mode of oncogenic

transition (time course or staged cell lines), and hence should

permit the identification of a gene signature common to the

process of cellular transformation.

Using microarrays capable of assaying most protein-coding

mRNAs, we performed transcriptional profiling of the transfor-

mation process in MCF-10A cells (eight time points from 1–36 hr

after tamoxifen treatment) and in the three fibroblast cell lines.

At a 1% false discovery rate by SAM analysis (Tusher et al.,

2001), we identified 1201 genes differentially expressed at any

time point in the ER-Src cells (Figure 1B; see Table S1 available

online) and 3208 genes (Figure 1C; Table S2) in any of the two-

way comparisons of the fibroblast cell lines. In the ER-Src model,

few genes were differentially expressed in the first time point

(1 hr), more than 100 genes 4 hr posttreatment, and more than

700 genes 36 hr postinduction. Interestingly, in the fibroblast

model, most changes in gene expression are due to T antigens,

not Ras, mirroring the morphology patterns but not transforma-

tion per se (Figure 1A), and suggesting that a viral oncogene

can deregulate multiple pathways to create a premalignant

phenotype.

The availability of transcriptional profiles for different isogenic

models of cellular transformation makes it possible to distinguish

between genes that play a relatively general role in transforma-

tion as opposed to those affected only by the specific experi-

mental model. We therefore analyzed the combined data sets

for differentially regulated genes that were either upregulated

or downregulated in both experimental models. We define a

gene signature of cellular transformation that contains 343 differ-

entially regulated genes of which 238 are upregulated and 105

are downregulated (Figure 1D; Table S3). This signature of differ-

entially expressed genes, hereafter termed the cancer gene

signature, will be the basis of bioinformatic approaches

described below.
Identification of Transcription Factors Linked
to Cellular Transformation
The cancer gene signature is defined by coordinate regulation of

gene expression during the process of cellular transformation,

and such regulation must involve DNA-binding transcription

factors. To identify such transcription factors, we used a compu-

tational approach (Warner et al., 2008) that asks whether

DNA sequence motifs defined by comprehensive analysis of

protein-DNA binding specificity in vitro are statistically overrep-

resented in candidate gene sets. We considered 2 kb or 10 kb

(Table S4) of sequence flanking each side of the transcriptional

start site for genes included in the cancer gene signature as

well as subsets of genes comprising specific biofunction

categories. This analysis indicates that several families of tran-

scription factors play a role in transformation including Myc/

Max, IRF, Ets, Sox, Hox, Myb, KLF, GATA, and Pou (Figure 1E).

Interestingly, factors such as the SOX and Pou family members
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have been implicated in formation of cancer stem cells (Ben-

Porath et al., 2008).

The Gene Signature of Cellular Transformation
Is Strongly Linked to Diverse Human Cancers
To validate our combined experimental system of cellular trans-

formation as a model of human cancer, we used two bioinfor-

matic approaches. First, we performed intensive literature

mining to correlate our gene signature with common 18 cancer

types. We found that 208/343 genes are correlated with at least

one cancer type (Table S5), with a range of 22-88 genes corre-

lated with each cancer type (Figure S1). K-means clustering

reveals 50 genes involved in most cancer types, including

STAT3, IL-1b, SOCS3, VEGF, HIF1a, and TGF-b1, which play

a significant role in inflammation. Second, we compared our

cancer gene signature with array-based transcriptional profiles

of specific cancer types. As shown in Figure 1F, the 343 common

gene set significantly overlaps inflammatory (breast [Lerebours

et al., 2008] and gastrointestinal [Ellmark et al., 2006]) and

metabolism-related (thyroid [Delys et al., 2007] and pancreatic

[Logsdon et al., 2003]) cancers (Table S6). Thus, the gene signa-

ture defined by our isogenic models of cellular transformation is

very strongly linked to diverse human cancers, thereby validating

these experimental systems as models of oncogenesis.

Linkage of the Cancer Gene Signature
to Metabolic Diseases, Including Obesity,
Diabetes, and Atherosclerosis
Using ingenuity pathway analysis, we identified three groups

of biofunctions and diseases that are significantly correlated

(p < 10�5) with the cancer gene signature (Table S7). The first

group includes cancer-related biofunctions such as cellular

growth and proliferation, cell cycle, and cell death. The second

group contains genes involved in inflammation and immune

system function, as well as genes linked to inflammatory and

gastrointestinal diseases. Many of these inflammatory genes

have been linked to cancer in the literature, in accord with the

multiple connections between cancer and inflammation. The

third group of biofunctions includes lipid metabolism, metabolic

disease, cardiovascular disease, and gastrointestinal disease.

Although certain aspects of metabolic disease have been linked

to cancer through the Akt pathway, the identification of multiple

genes involved in lipid metabolism was unexpected. For

example, OLR1, SREBP-1, SNAP23, and VAMP4 are well

described in studies of lipid metabolism, cholesterol biosyn-

thesis, and atherosclerosis, but have not been discussed in

terms of cancer.
Figure 1. A 343-Gene Signature of Cellular Transformation

(A) Phase contrast images (scale bars represent 10 mm) of morphology of non

induction by tamoxifen (TAM) treatment. BJ fibroblasts have stable integration of

elements.

(B) Differentially expressed genes during MCF10A cell transformation at the indi

cutoffs.

(C) Differentially expressed genes in BJ fibroblasts were analyzed as two way com

4-fold) log cutoffs.

(D) The 343-gene signature of cellular transformation defined by the overlap of d

(E) Transcription factor families whose DNA-binding motifs are enriched in the 2 k

genes within the indicated biofunctions and diseases.

(F) Relationship between the 343 gene set and the indicated diseases. The overl
As an independent method to confirm the linkage between

cancer and metabolic diseases, we compared the cancer gene

signature identified here to microarray transcriptional profiling

studies from diseased individuals. There is significant overlap

between the cancer gene signature and expression signatures

found in obesity (Lee et al., 2005), atherosclerosis (Sluimer

et al., 2007; Skogsberg et al., 2008), and metabolic syndrome

(Chen et al., 2008) (Table S7). In addition, among a group of

54 genes, we observe a significant correlation between cancer

and various metabolic conditions (Figure 2A).

Gene Network Analysis Identifies Central Players
that Link Cellular Transformation to Metabolic Diseases
Although transcriptional profiling is useful for uncovering

common regulatory networks between disease states, it cannot

account for the contribution of protein-protein interactions, post-

translational modification, DNA-binding events, and subcellular

localization. To address this issue, we organized the set of differ-

entially expressed genes into networks with central nodes via

ingenuity pathways analysis. A three-way comparison between

networks derived from our two experimental data sets and

from a gene set describing metabolic syndrome reveals a high

overlap between the central nodes of cancer and metabolic

syndrome (Figure 2B). Specifically, we identified 24 common

central nodes, including inflammation-related nodes such as

IFN-g, IL-1b, IL-6, and NF-kB, suggesting that inflammatory

processes are important factors for both cancer and metabolic

diseases. In addition, insulin and low-density lipoprotein (LDL)

appear as central nodes in cancer gene networks, suggesting

the importance of protein and lipid metabolism in cellular

transformation.

To address the relationship between our cancer gene sig-

nature and human diseases that lack transcriptional profiling

data, we compiled gene sets based on literature-curated data,

and organized them into networks to identify central nodes

(Table S8). Interestingly, 10 out of 32 diseases were highly corre-

lated with cancer at the gene network level (Figures 2C and 2D

and Table S8). These diseases can be grouped as metabolic

disorders (obesity, type II diabetes, atherosclerosis, hypercho-

lesterolemia, and polycystic ovarian syndrome) and autoimmune

disorders (ulcerative colitis, Crohn’s disease, and SLE).

Genes Identified as Central Nodes Are Important
for Cellular Transformation
We validated the functional importance of these central nodes

for cellular transformation by a number of approaches: modula-

tion of function through drugs, modulation of expression
transformed and transformed cells. MCF10A cells are transformed after Src

one (hTERT), two (hTERT, SV40E), or three (hTERT, SV40E, HRAS-V12) genetic

cated time points after TAM treatment using different (0.5-, 1-, and 2-fold) log

parisons in all combinations for the three cell types using different (0.5-, 1-, 2-,

ifferentially expressed genes in the two isogenic models.

b or 10 kb regions flanking the transcriptional start site of up- or downregulated

ap counts and p values are indicated.
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Figure 2. Linkage of the Cancer Gene Signature to Inflammatory and Metabolic Diseases

(A) Heat-map representation of the 54 common genes between cancer and subcategories of metabolic syndrome gene set.

(B) Common central nodes between gene networks derived from differentially expressed genes from MCF10A, BJ fibroblast, and metabolic syndrome gene sets.

Each sphere represents a central node of a gene network. The 24 common nodes are listed.
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Figure 3. Many Drugs Used to Treat Non-cancer Diseases Block
Cellular Transformation

(A) Percentage of transformed cells (morphology assay) observed by treating

TAM-induced MCF10 ER-Src cells with the indicated drugs.

(B) Soft agar colony assay of the effect of the indicated drugs on transformation.

(C) Tumor growth (mean ± SD) of ER-Src cells after four cycles of intraperito-

neal treatments with the indicated drugs.

Cancer Cell
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(siRNA or overexpression), and modulation of cytokine levels

(antibodies or addition of exogenous cytokines). We chose

experimental conditions where the treatment did not significantly

affect the growth of nontransformed cells. Tamoxifen-treated or

non-tamoxifen-treated cells subjected to these perturbations

were examined for cellular transformation either by morphology

or by focus formation. Any perturbed node that decreased trans-
(C) Comparison of genes and central nodes between the cancer gene signature a

cated). For each disease, the number of genes and nodes are indicated along with

of the overlap.

(D) Heat map representation of the relationship between common nodes of cel

indicated in red.
formation of tamoxifen-treated cells or increased transformation

in non-tamoxifen-treated cells by at least 25% was considered

to have a contributing role to the transformation process

(summarized in Table S9). Importantly, all 23 nodes tested

affected cellular transformation when their function was altered.
Drugs Designed for Treatment of Metabolic Diseases
Inhibit Cellular Transformation and Tumor Growth
The molecular similarities among the various diseases predicts

that drugs that designed or used for treatment of one disease

may also help treat other diseases or in this case cancer. We

therefore tested drugs that are used therapeutically for different

diseases for their ability to inhibit oncogenic transformation and

colony formation when plated in soft agar. Interestingly, 11 out of

13 drugs tested inhibit morphological transformation (Figure 3A),

and 12 out of 13 drugs tested suppress colony formation

(Figure 3B) to varying extents. The concentrations of the drugs

used in these experiments do not significantly affect cell growth

(Figure S2), indicating that their effects on transformation and

colony formation are not due to general cytotoxicity.

Because metformin, sulindac, tocilizumab, simvastatin, and

cerulenin show the strongest effects on cellular transformation

and tumorigenicity, we tested their ability to inhibit tumor growth

in nude mice. To mimic conditions when patients are diagnosed

with a tumor, we treated tumors that arose 10 days after injection

of transformed ER-Src cells. Drugs were delivered by five cycles

of intraperitoneal injections near the tumors every fifth day. Tumor

growth is completely suppressed by metformin and sulindac and

significantly delayed by cerulenin and simvastatin (Figure 3C).

The effect of metformin is much stronger than we observed

previously (Hirsch et al., 2009), presumably because drug

concentrations employed here are 8-fold higher and treatment

was for five cycles instead of three. Thus, drugs designed to

combat metabolic diseases can preferentially inhibit transformed

cells, and hence may be useful in treating some types of cancer.
OLR1 and Other Lipid Metabolic Genes Are Important
for Cellular Transformation
As mentioned above, the cancer gene signature includes a

number of metabolic genes not previously linked to cancer. We

used siRNA inhibition to examine the role of 11 such metabolic

genes in cellular transformation. Efficient depletion of OLR1

(oxidized LDL receptor 1), GLRX, SNAP23, EGLN1, VAMP4,

GRN, and PGS1 (in most cases by two different siRNAs;

Figure S3) significantly reduced anchorage-independent growth

in soft agar in both epithelial and fibroblast transformation

models (Figure 4), but had no effect on growth of non-trans-

formed MCF10A cells (Figure S3C). Depletion of SCD1 reduced

colony formation in the fibroblast model, depletion of FGD6

reduced colony formation in the MCF10A epithelial model, and

depletion of MRLP9 and MOCOS had no effect. Thus, 9 out of

11 metabolic genes not previously linked to cancer tested are
nd gene sets of 32 diseases derived from literature (number of references indi-

the overlap with the cancer gene signature and the p value for the significance

lular transformation and the indicated diseases, with significant relationships

Cancer Cell 17, 348–361, April 13, 2010 ª2010 Elsevier Inc. 353



Figure 4. Metabolic Genes Affect the Tumorigenicity of Transformed
Cells

(A) Number of colonies in soft agar (mean ± SD) of untreated and TAM-treated

MCF10A ER-Src cells 24 hr posttransfection with siRNAs against the indicated

genes (NC indicates negative control siRNA). Number of colonies are pre-

sented as the mean ± SD of three experiments.

(B) Soft agar colony or foci assay in nontransformed (EH) and transformed

(ELR) BJ fibroblasts 24 hr posttransfection with siRNAs against the indicated

genes (mean ± SD).
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important for cellular transformation, and 7 of these are involved

in both experimental models.

OLR1, SNAP23, VAMP4, and SCD1 are lipid-related genes,

and LDL is a common hub between cancer and metabolic

gene networks, suggesting the importance of lipid metabolism

during cellular transformation. Because OLR1 (oxidized LDL

receptor) expression is induced in a transformation-dependent

(Figure 5A) and depletion of OLR1 shows the strongest effects

on anchorage-independent growth in both models, we further

examined the role of OLR1 in the MCF-10A model. Depletion

of OLR1 by two different siRNAs blocks morphological transfor-

mation (Figure 5B) and it inhibits cell motility (migration, invasion,

and wound-healing assays; Figure 5C and Figure S4). In

addition, cell growth of transformed cells (treated with TAM for

48 hr) is blocked by inhibition of OLR1 expression via siRNAs

or monoclonal antibody (Figure 5D). Thus, OLR1 and lipid

metabolism are important for cellular transformation and mainte-

nance of the transformed state.

OLR1 Is Important for Maintaining the Transformed
State in Cell Lines of Diverse Developmental Origin
To generalize these results, we examined the role of OLR1 in

developmentally diverse normal and cancer cell lines. siRNA-

mediated inhibition of OLR1 expression does not affect the
354 Cancer Cell 17, 348–361, April 13, 2010 ª2010 Elsevier Inc.
growth of nontransformed breast (MCF10A and HME1) or pros-

tate (PWR-1E) cells. In contrast, inhibition of OLR1 suppresses

growth of MCF7 (breast cancer), HepG2 (hepatocellular carci-

noma), and HeLa (cervical cancer) cells (Figure 6A). In addition,

inhibition of OLR1 reduces tumorigenicity (Figure 6B) of all three

cancer cell lines. Thus, OLR1 is important for maintenance of the

transformed state in a variety of developmentally unrelated

cancer cell lines.

OLR1-Mediated Activation of Inflammatory
and Hypoxic Pathways through NF-kB
Is Important for Cellular Transformation
OLR1 is activated in response to oxidized LDL, angiotensin II,

TNF-a, and other stress stimuli (Mehta et al., 2003), and TNF-a

production is increased very early (1–4 hr) during ER-Src trans-

formation (Figure 7A). OLR1 is a marker of atherosclerosis, and

it activates inflammatory and hypoxia pathways in vascular

endothelial cells and macrophages. Similarly, genes involved in

inflammation (e.g., IL-1b, IL-6, and IL-8) and hypoxia (HIF1a,

VEGF, and CA9) are induced during the process of cellular

transformation in the MCF-10A model. In accord with these

observations, inhibition of OLR1 reduces the level of the inflam-

matory- and hypoxia-regulated genes (Figure 7B), and it also

reduces NF-kB activation (Figure 7C) through inhibition of IkBa

phosphorylation (Figure 7D). Furthermore, TNF-a inhibition

blocks the activation of HIF1a, VEGF, and CA9, the downstream

targets of OLR1 (Figure 7E). In addition, simvastatin, a lipid-

lowering drug that inhibits OLR1 expression in endothelial cells,

strongly inhibits cellular transformation (Figure 7F) in a manner

associated with inhibition of NF-kB activity, but it does not affect

growth of nontransformed MCF10A cells (data not shown).

Conversely, treatment of MCF-10A cells with a low dose of

oxidized LDL (oxLDL) induces cellular transformation and colony

formation (Figures 7G and 7H and Figure S5), with 40%–50%

transformation observed after 72 hr and 85% observed after

120 hr. Transformation mediated by oxLDL requires NF-kB,

because inhibition of NF-kB (BAY-117082 treatment) blocks

transformation (Figures 7G and 7H). Taken together, these

observations suggest that OLR1 regulates the inflammatory

and hypoxia responses during transformation in the MCF-10A

model and that TNF-a is a ligand for OLR1 activation.

OLR1 Is Important for Tumor Growth in Mice
When injected as xenografts into nude mice, transformed

MCF10A-ER-Src cells invariably cause tumors. Intraperitoneal

injection of siRNA against OLR1 (four cycles every 5 days) causes

a marked reduction in tumor growth (Figure 8A), and along with a

strong decrease in OLR1 expression levels (Figure 8B). In con-

trast, parallel injections of a control siRNA into the same cohort

of tumor-containing mice have no effect on tumor growth or

OLR1 expression. Thus, OLR1 is important for tumor growth in

mouse xenografts.

Lipid Metabolism Genes OLR1, GLRX, and SNAP23

Are Often Coordinately Overexpressed in Late-Stage
Breast and Prostate Cancer Tissues
We examined whether expression of OLR1, GLRX, and SNAP23

is altered in human cancers (Figures 8C and 8D). OLR1 is over-

expressed in 37% of mammary adenocarcinomas and 25% of



Figure 5. OLR1 Regulates Transformation,

Cell Growth, and Motility

(A) OLR1 mRNA expression levels (mean ± SD) in

untreated and TAM-treated MCF10A ER-Src cells

and the EH, EL, and ELR BJ fibroblasts.

(B) Representative phase-contrast images (scale

bars represent 25 mm) of MCF10A ER-Src cells

that were or were not treated with TAM together

with two different siRNAs against OLR1.

(C) Migration and invasion assays in untreated and

TAM-treated MCF10A ER-Src cells in the pres-

ence or absence of control or OLR1 siRNAs. For

all panels, the data are presented as mean ± SD.

(D) Cell growth of MCF10A ER-Src TAM-treated

cells (mean ± SD) after treatment with control or

OLR1 siRNAs or with an OLR1 antibody and an

IgG isotype control relative to untreated cells.
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prostate adenocarcinomas, and in some cases 10-fold overex-

pression is observed. GLRX and SNAP23 are overexpressed in

17% and 29% of mammary adenocarcinomas and in 14% and

16% of prostate adenocarcinomas, although the magnitude of

overexpression is less than observed for OLR1. When tumors

are classified according to clinicopathological parameters,

average mRNA expression levels of these genes increase with

the stage grading of the tumor, with stage IV tumors showing

high levels in most cases. In many, but not all, stage IV tumors,

these three lipid metabolism genes are overexpressed, sugges-

tive of coordinate regulation. Thus, lipid metabolism genes are

often overexpressed in breast and prostate cancer tissues,

and high levels of expression are associated with more aggres-

sive, metastatic stage tumors.

DISCUSSION

Identification of a Cancer Gene Signature
We define a cancer gene signature by a common set of genes

that are differentially regulated in the same manner in two diverse

models of cellular transformation. Several features of this

approach are advantageous. First, isogenic models make it

possible to identify genes involved in transformation without

the complications of unknown and irrelevant genetic differences

between non-transformed and transformed cells. Second, the

two diverse model systems help to distinguish transformation-

specific genes from genes that are regulated in a cell-type

specific manner. In this regard, our cancer gene signature

contains only 343 genes, whereas thousands of genes are differ-

entially regulated in only one experimental model. This increased

specificity is important for mechanistic understanding of

transformation and for increasing the statistical significance of

bioinformatics analyses. An important consequence of this
Cancer Cell 17, 348–3
specificity is our discovery of genes

involved in lipid metabolism as contrib-

uting to cellular transformation. Third,

the inducible Src system in MCF-10A

cells offers the unique opportunity to

kinetically follow the transcriptional

program of cellular transformation in

a manner similar to that used to study
viral infection and other temporally ordered processes. Impor-

tantly, the transcriptional signature derived from the combined

analysis of two isogenic, but biologically unrelated, models of

cellular transcription is highly correlated with a wide variety of

human cancers, thereby validating the clinical relevance of our

experimental models.

A Role For Lipid Metabolism in Cellular Transformation
and a Link between Cancer and Atherosclerosis
Although most genes in the cancer gene signature have been

previously linked to cancer by some criterion, some have not.

In support of their functional importance and relevance to

cancer, 7 out of 11 such genes tested are important for cellular

transformation in both experimental models (2 others in one

model) and those tested are overexpressed in breast and pros-

tate cancer tissues. Unexpectedly, genes involved in lipid

metabolism are highly enriched in our cancer gene signature,

particularly among those not previously linked to cancer. For

example, OLR1, SNAP23, VAMP4, SCD1, and SREBP1 are

lipid-related genes, and LDL is a common hub between cancer

and metabolic gene networks. Similarly, GALNT2 is associated

with high cholesterol and triglyceride levels (Kathiresan et al.,

2008), but not been linked with any type of cancer.

Strikingly, oxidized LDL can cause transformation of MCF-10A

cells lacking ER-Src in a manner that depends on NF-kB.

The receptor for oxidized LDL, OLR1, is a marker for atheroscle-

rosis, and it activates inflammatory and hypoxia pathways in

vascular endothelial cells and macrophages. In the MCF10A

ER-Src model, inhibition of OLR1 also reduces NF-kB activation

and the inflammatory and hypoxia pathways, suggesting a

mechanistic connection between cellular transformation and

atherosclerosis. Finally, OLR1 is important for maintaining the

transformed state in cancer cell lines of diverse developmental
61, April 13, 2010 ª2010 Elsevier Inc. 355



Figure 6. OLR1 Regulates Cell Growth and

Tumorigenicity of Cancer Cells

(A) Cell growth of normal (MCF10A, HME1, PWR-

1E) and cancer (MCF7, HepG2, HeLa) cells after

treatment with control or OLR1 siRNAs. Data are

presented as mean ± SD.

(B) Soft agar colony assays for the cancer cell

lines. The data are presented as mean ± SD.
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origin, and for tumor growth in xenografts experiments. Thus, the

importance of OLR1 and other genes involved in lipid metabo-

lism in cellular transformation is relevant for, and a major deter-

minant of, the connection between cancer and atherosclerosis.

The finding of lipid metabolism genes in our cancer gene signa-

ture is noteworthy, because breast epithelial cells and primary

fibroblasts are not major players in lipid biology and are function-

ally unrelated to cells involved in heart disease.

A Common Molecular Signature for Diverse
Human Diseases
Clinical and epidemiological studies have linked cancer with

inflammatory and metabolic diseases. In addition, specific

molecular pathways involved in cancer are also involved in

inflammatory diseases (e.g., NF-kB) and metabolic diseases

(e.g., Akt). Our cancer gene signature and underlying regulatory

networks significantly extend these observations by linking

cancer with a variety of human diseases in a genome-wide

manner that is based solely on experimental models of cellular

transformation. These links between cancer gene signature

and other diseases are robust, because they are based on (1)
356 Cancer Cell 17, 348–361, April 13, 2010 ª2010 Elsevier Inc.
common biological functions, (2) correla-

tions with literature-based annotations of

individual human diseases, (3) similarity

to transcriptional profiles of diseased

patients, and (4) identification and over-

lap of central nodes that define regulatory

pathways. Furthermore, it is striking the

studies of cellular transformation in

breast epithelial cells and fibroblasts

uncovered connections to diseases in-

volving developmentally unrelated cell

types and biological functions.

More importantly, our results indicate

that many disease states share common

molecular properties and biological

programs. These similarities go beyond

pairwise connections between cancer

and a particular disease or regulatory

pathway. Further, they do not simply

reflect a stress response, because the

transcriptional signature is not linked to

any stress conditions. Instead, our results

strongly argue that a core group of bio-

logical pathways is critical for normal

cellular growth and behavior in a variety

of cell types. Genetic or physiological

disruption of these pathways leads to a

transcriptional signature that is common
to a diverse set of human diseases. As a consequence, genetic

or environmental factors that affect the common genes or gene

networks should predispose individuals to the development of

multiple human diseases, and may contribute to the epidemio-

logical connections between seemingly unrelated pathologic

conditions. However, our results do not address whether the

presence of one disease per se, increases the probability that

another disease state may arise, because the different disease

states involve different cell types and hence may arise indepen-

dently. Conversely, the existence of a common transcriptional

program and regulatory network for many diseases suggests

that drugs used to treat one disease may be effective against

other diseases. In this regard, 11 out of 13 drugs used to treat

non-cancer diseases inhibit cellular transformation.

How does a common transcriptional program contribute to a

diverse set of human diseases? We suggest that the interplay

between cell-type specific transcription factors and the

common transcriptional program leads to cell-type specific

transcription profiles and phenotypes that are associated

with specific disease states. This suggestion is in accord with,

and indeed prompted by, the well-established principle that
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expression of mammalian genes requires combinations of tran-

scriptional regulatory proteins bound to enhancers (Struhl,

1991). In this view, the combination of cell-type specific factors

with a common disease program can either lead to inappro-

priate proliferation diagnostic of cancer or nonproliferative

abnormalities that lead to other diseases such as diabetes or

atherosclerosis.

EXPERIMENTAL PROCEDURES

Cell Lines and Culture Conditions

MCF-10A ER-Src and MCF-10A pBABE cells were grown in DMEM/F12

medium supplemented as described in Debnath et al. (2003) with the addition

of puromycin. The Src oncogene was induced by the addition of 1 mM tamox-

ifen (Sigma) to confluent cell cultures for times indicated in the text. For testing

the effect of drugs on transformation, each drug was titrated for optimum inhi-

bition with minimal effects on nontransformed cells. All BJ fibroblast cell lines,

described previously (Hahn et al., 1999), were cultured on KO-DMEM media,

10% FBS, Medium 199 glutamine, and Pen/strep. Each drug used in the

drug screen was titrated for optimum inhibition with minimal effects on

nontransformed cells. The following drugs were used in the following concen-

trations: metformin (0.1 mM), cerulenin (1 mg/ml), tocilizumab (2 mg/ml), aspirin

(0.1 mM), exendin4 (15 mm), sulindac (100 mM), simvastatin (10 mM), meloxi-

cam (30 mM), indomethacin (30 mg/ml), celecoxib (10 mM), piroxicam

(100 mM), nimesulide (50 mM), sulindac (100 mM), mevastatin (1 mM).

RNA Preparation

RNA was extracted from all cell lines by Trizol method followed by RNeasy

columns purification. These samples were hybridized on an Affymetrix U133

2.0A array at the Dana Farber Array Facility.

Gene Expression Analyses

All gene expression data were normalized and summarized with RMA

algorithm (Irizarry et al., 2003) with an updated Entrez gene probeset definition

(Dai et al., 2005). ComBat (Johnson et al., 2007) was used to remove nonbio-

logical experimental variation or batch effects between batches of microarray

experiments. In order to detect differentially expressed genes, significance

analysis of microarrays (SAM) algorithm (Tusher et al., 2001) was used to

calculate the q-values (false discovery rate) for genes in each time point. For

ER-Src expression arrays, seven samples were used as controls, including:

Er-src_12EtOH (D1, D2, D3), Er-src_24EtOH (D1, D3), Er-src_0hr_TAM

(D2, D3). A gene will be regarded as differentially expressed gene, only if (1)

it was ‘‘present,’’ in terms Affymetrix MAS5 present/absent calls, in at least

one time point, and (2) q value < 1 (either upregulated or downregulated) in

at least one time point.

Disease Gene Sets

Gene sets were collected directly from previously published papers. These

include the 1406 gene set for metabolic disorders (Chen et al., 2008), the

494 gene set for atherosclerosis (Sluimer et al., 2007), the 60 gene set for

inflammatory breast cancer (Lerebours et al., 2008), the 28 gene set for inflam-

matory gastric cancer (Ellmark et al., 2006), the 687 gene set for thyroid cancer

(Delys et al., 2007), and the 80 gene set for pancreatic cancer (Logsdon et al.,

2003).

Lever Algorithm Analysis

The Lever algorithm was described previously (Warner et al., 2008). We incor-

porated the phylogenetic information from 12 mammals (mouse, rat, human,

rabbit, chimp, macaque, cow, dog, armadillo, tenrec, opossum, and elephant)

and used the MultiZ 17-way alignment as described in Supplemental Experi-

mental Procedures. The PBM data used in the study were for 104 TFs (tran-

scription factors) from 22 structural classes (Badis et al., 2009) and for 178

TFs from the Homeodomain class (Berger et al., 2008). We used ‘‘Seed-and-

Wobble’’ algorithm that has been described previously (Berger et al., 2006)

in order to represent these data as position weight matrices (PWMs) for

each TF. We used these PWMs in the Lever analysis.
Ingenuity Pathway Analysis

Ingenuity pathways analysis (Ingenuity Systems, Mountain View, CA) is a

robust and expertly curated database containing up-to-date information on

over 20,000 mammalian genes and proteins, 1.4 million biological interactions,

and 100 canonical pathways incorporating over 6,000 discreet gene concepts.

This information is integrated with other relevant databases such as Entrez-

Gene and Gene Ontology. The experimental data sets were used to query

the IPA and to compose a set of interactive networks taking into consideration

canonical pathways, the relevant biological interactions, and the cellular and

disease processes.

Statistics

The overlap count was computed by counting the number of genes in the inter-

section between two different gene sets. P values were calculated by Fisher

exact test and hypergeometric probability distribution analysis in order to

estimate the statistical significance of overlap between two gene sets.

Small Interference RNA Transfection Experiments

MCF10A ER-Src cells were seeded in 6-well plates and were transfected with

100 nM siRNAs from Ambion Inc. against OLR1 (s9842 and s9843), GLRX

(s5841 and s229668), PLAU (s10610 and s10612), GRN (s6149 and s6151),

PGS1 (s18191 and s18192), SCD1 (s12505), FGD6 (s31504), MRPL9

(s35151), MOCOS (s230170), MYC (s1930), AKT (s659), SOCS3 (s17190),

STAT3 (s744), HIF1A (s6539), NF-kB (s11914), IL6 (s7313), RAS (s806),

VEGF (s460) using siPORT NeoFX transfection agent. SiPORT NeoFX is a lipid

transfection agent consisting of a mixture of lipids that spontaneously complex

small interference RNA and facilitates its transfer to the cells. Transfection with

100 nM siRNA (s4390846) was used as a control. No cell toxicity was detected

due to the transfection agent.

Soft Agar Colony Assay

Triplicate samples were mixed 4:1 (v/v) with 2.0% agarose in cell growth

medium for a final concentration of 0.4% agarose. The cell mixture was plated

on top of a solidified layer of 0.5% agarose in growth medium. Cells were fed

every 6 to 7 days with growth medium containing 0.4% agarose. The number

of colonies was counted after 15 days. The experiment was repeated thrice

and the statistical significance was calculated using Student’s t test.

Cell Migration, Invasion, and Wound-Healing Assays

For the migration assay, 105 trypsinized cells were added to the top chambers

of the transwell (8 mm pore size; BD Bioscience, Bedford, MA), and assay

medium was added to the bottom chambers. After overnight incubation,

the migratory cells were fixed and stained with 0.1% crystal violet solution.

The experiment was repeated thrice and the statistical significance was calcu-

lated with a Student’s t test. Invasion of matrigel has conducted by using

standardized conditions with BDBioCoat growth factor reduced MATRIGEL

invasion chambers (PharMingen). Assays were conducted according to the

manufacturer’s protocol, with 5% horse serum (GIBCO) and 20 ng/ml EGF

as chemoattractants. Wound-healing assays have been described previously

(Hirsch et al., 2009).

RNA Analysis

Equal amounts of purified RNA samples from untreated and TAM-induced

(1, 2, 4, 8, 12, 16, 24, and 36 hr) MCF10A ER-Src cells or from other cancer

cell lines were reverse-transcribed to form cDNA, which was subjected to

SYBR Green based real-time polymerase chain reaction analysis. For analysis

of patient samples, RNAs from 48 mammary adenocarcinoma tissues and

3 normal mammary tissues and from 44 prostate adenocarcinoma and

3 normal tissues were purchased from Origene (Rockville, MD). The experi-

ments have been performed in triplicate and data are presented as mean

and standard deviation (SD).

ELISA Assays

The NF-kB/p65 ActivELISA Kit measured nuclear p65 levels in MCF10 ER-Src

untreated or TAM-treated for 36 hr. The anti-p65 antibody coated plate

captures free p65 and the amount of bound p65 is detected by adding a

second anti-p65 antibody followed by alkaline phosphatase (AKP) -conjugated

secondary antibody using colorimetric detection in an enzyme-linked
Cancer Cell 17, 348–361, April 13, 2010 ª2010 Elsevier Inc. 357



Figure 7. OLR1 Regulates Transformation through NF-kB Pathway

(A) TNF-a levels (mean ± SD) at the indicated time points during transformation.

(B) VEGF, HIF1A, and CA9 mRNA levels (mean ± SD) assessed in nontreated (NT) and TAM-treated (36 hr) MCF10A ER-Src cells in the presence or absence of

two different siRNAs against OLR1.

(C) NF-kB activity (ELISA assay; mean ± SD) in untreated and TAM-treated MCF10A ER-Src cells in the presence of the indicated siRNAs or 10 mM simvastatin.

(D) IkBa phosphorylation levels (ELISA assay; mean ± SD) in untreated and TAM-treated MCF10A ER-Src cells in the presence or absence of control or OLR1

siRNAs.

(E) VEGF, HIF1A, and CA9 mRNA levels (mean ± SD) assessed in Ab-IgG or Ab-TNFa treated ER-Src cells.

(F) Representative phase contrast images (scale bars represent 10 mm) of untreated and TAM-treated MCF10A ER-Src cells in the presence or absence of

simvastatin.
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Figure 8. OLR1 Is Important for Tumor Growth and Overexpressed Along with GLRX and SNAP23 in Cancer Tissues

(A) Tumor volume (mean ± SD) of mice injected at time 0 with transformed MCF10A-ER-Src cells that were untreated, or treated by intraperitoneal injections every

5 days (four cycles starting at day 15; arrows indicate the day or injections) with 100 nM siRNA against OLR11 or an siRNA control.

(B) OLR1 expression levels (mean ± SD) from tumors derived from the above experiment.

(C) Expression of OLR1, GLRX, and SNAP23 in breast cancer tissues separated by clinicopathological stage.

(D) Expression of OLR1, GLRX, and SNAP23 in prostate cancer tissues separated by clinicopathological stage.
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immunosorbent assay (ELISA) plate reader at absorbance 405 nm. To detect

IkBa phosphorylation status (serine 32), we used a solid phase sandwich

ELISA (cat no 7276, Cell Signaling) according to the manufacturer’s instruc-

tions. The magnitude of the absorbance (450 nm) is proportional to the quantity

of bound target protein. To detect TNF-a production, we used a TNF-alpha

Quantikine ELISA Kit (cat no. DTA00C, R&D Systems) according to the

manufacturer’s instructions. For all ELISA assays, each sample was loaded

in triplicate and data are presented as mean ± SD.
(G) Representative phase-contrast images (scale bars represent 10 mm) and (H)

presence or absence of 5uM NF-kB inhibitor (BAY-117082). For all relevant pane
Tumor Growth in Xenografts

For assessing the role of OLR1, 5 3 106 transformed MCF10A ER-Src cells

were injected into the right flank of 15 female nu/nu mice (Charles River

Laboratories), all of which developed tumors in 15 days with size �125 mm3.

The mice were randomly distributed into three groups that were untreated,

or treated by intraperitoneal injections every 5 days (four cycles) with 100 nM

siRNA against OLR1 or a control siRNA. To assess the effects of metformin

(20 mg/kg), cerulenin (40 mg/kb), simvastatin (20 mg/kg), and sulindac
number of colonies of MCF10A cells treated with oxidized LDL (oxLDL) in the

ls, the data are presented as mean ± SD.
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(15 mg/kg), the same procedure was followed except that drug treatment

started 10 days of tumor formation (size �60 mm3). Tumor volume was

measured at various times after the initial injection. All mouse experiments

were approved by the Tufts University Institutional Animal Care and Use

Committee.

ACCESSION NUMBERS

Microarray data have been deposited at GEO with the accession number

GSE17941.
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Supplemental Information includes five figures and nine tables and can be

found with this article online at doi:10.1016/j.ccr.2010.01.022.
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